
Big	Data	Engineering	in	the	Cloud	
	

Pre-course	exercise	
	

©	2019	Julie	Weeds	(adapted	from	Paul	Fremantle	/	Betwixt	2017)	

Learning	simple	functional	programming	in	Python	
This	exercise	is	a	prequel	for	anyone	planning	to	do	map/reduce	programming	in	
Spark,	using	Python.		
	
The	specific	aim	of	this	exercise	is	to	make	you	familiar	with	lambda	expressions,		
and	thence	onto	the	map,	reduce,	filter	and	flatMap	concepts.	It	also	validates	
that	the	VirtualBox	VM	is	working	and	that	you	can	run	Jupyter.	
	
Exercise	setup	
This	exercise	assumes	that	you	have	successfully	downloaded	and	started	the	
course	VirtualBox	VM.	If	you	need	to	log	in,	the	userid/password	are	big/big.	
	
Start	a	new	command	shell,	by	clicking	the	Terminal	icon	on	the	left	hand	side-
bar:	

	
	
In	that	window,	type:	
git clone https://github.com/julieweeds/BigDataVM.git
cd BigDataVM/precourse
ls
	
You	should	see	something	similar	to		

	
	
You	might	want	to	change	the	display	settings	to	make	the	text	more	readable.		
Increase	“scale	for	menu	and	title	bars”	if	you	want	bigger	fonts.	
	

Big	Data	Engineering	in	the	Cloud	
	

Pre-course	exercise	
	

©	2019	Julie	Weeds	(adapted	from	Paul	Fremantle	/	Betwixt	2017)	

	

Big	Data	Engineering	in	the	Cloud	
	

Pre-course	exercise	
	

©	2019	Julie	Weeds	(adapted	from	Paul	Fremantle	/	Betwixt	2017)	

	
Now	back	in	the	terminal	window	type:	
jupyter notebook

A	brower	window	should	pop	open:	

	
	
In	the	top	right	corner,	click	on	New->Python	2	

	
	
This	will	open	a	new	tab,	with	a	Python	Notebook	(this	is	a	way	of	editing	and	
running	Python	in	a	browser	window	that	will	be	used	extensively	during	the	
course).	You	should	see:	
	

	
	
Click	on	the	word	Untitled,	and	change	the	name	of	the	notebook	to	precourse.	
You	should	be	able	to	hit	Ctrl-S	at	any	time	to	save.	You	can	find	further	
keyboard	mappings	here:	
https://www.cheatography.com/weidadeyue/cheat-sheets/jupyter-notebook/		

Big	Data	Engineering	in	the	Cloud	
	

Pre-course	exercise	
	

©	2019	Julie	Weeds	(adapted	from	Paul	Fremantle	/	Betwixt	2017)	

	
Exercise	Steps	
	
For	this	exercise,	we	will	be	using	a	simple	Python	class	FList.	
	
This	file	is	some	simple	Python	syntactic	sugar.	Basically	it	makes	the	syntax	of	
our	exercises	look	more	like	the	Apache	Spark	syntax	and	less	like	the	default	
Python	syntax.	You	need	this	file	in	the	same	directory	where	you	start	Jupyter	
from.		
	
In	the	cell	type:	
	
from flist import FList
nums = FList([1,2,3,4,5])
def double(x): return x*2
print(nums)
print(nums.map(double))
	
It	should	look	like	this:	

	
	
Now	click	the	Run	icon	(or	press	Shift-Enter)	
	
You	should	see	output	like	this:	

Big	Data	Engineering	in	the	Cloud	
	

Pre-course	exercise	
	

©	2019	Julie	Weeds	(adapted	from	Paul	Fremantle	/	Betwixt	2017)	

		
Let’s	review	what	is	happening	there.	
	
FList	is	just	a	list,	very	similar	to	a	normal	Python	list,	but	with	slightly	different	
behaviour	for	map,	filter,	flatMap	and	reduce.	
	
Double	is	just	a	function	that	returns	twice	its	input.		
def double(x): return x*2;

The	map	function	is	a	meta-function:	it	takes	a	function	as	an	argument,	and	
applies	it	to	the	list.		
print nums.map(double)
[2, 4, 6, 8, 10]

In	pseudo-code	we	can	say	that:	
[n1,n2,n3].map(double)	==	[double(n1),	double(n2),	double(n3)]	
	
The	filter	function	is	another	meta-function.	filter	decides	whether	to	include	an	
element	in	the	list	based	on	the	result	of	calling	the	function	that	you	pass	in.	If	
the	function	evaluates	to	True,	then	it	keeps	the	element.	Otherwise	it	removes	
it.	Let’s	see	filter	in	action.	
	
In	the	next	cell,	type	
def even(x): return x%2==0
print(nums.filter(even))

When	you	run	this	cell	you	should	see:	

[2, 4]
	
As	you	can	see	this	approach	leads	to	very	expressive	code.	
	
However,	we	can	make	this	code	even	more	expressive	if	we	understand	the	
concept	of	a	lambda.	Lambdas	are	a	concept	that	pre-dates	physical	computers	
and	goes	back	to	the	thinking	of	a	brilliant	mathematician	called	Alonzo	Church	
who	formulated	the	lambda	calculus	in	the	1930s.	
	
A	lambda	is	simply	an	unnamed	function.	Suppose	we	want	a	function	that	
returns	the	double	its	input.	

Big	Data	Engineering	in	the	Cloud	
	

Pre-course	exercise	
	

©	2019	Julie	Weeds	(adapted	from	Paul	Fremantle	/	Betwixt	2017)	

	
lambda x: x*2
	
If	you	run	this,	Python	will	tell	you	it’s	a	function:	

	
	
As	you	can	see	Python	believes	this	to	be	a	function.	We	can	apply	that	function.	
Type	

(lambda x: x*2)(2)

And	run	it	

	
Guess	what?	This	lambda	is	equivalent	to	our	previous	function	double	
	
Now	we	can	redo	our	“double	every	number	in	the	list”	
	
Run	the	following:	
	
nums.map(lambda x: x*2)
	

	
	
Why	would	we	use	this	instead	of	defining	double	as	a	named	function?	
	
The	main	reasons	are	that	it	is	more	compact,	and	the	code	is	more	self-
expressive.	When	you	start	using	lambdas	you	might	not	appreciate	this,	because	
initially	it	can	be	confusing,	and	therefore	less	readable.	But	once	lambdas	
become	ingrained	and	hence	you	can	understand	them	easily,	this	syntax	
becomes	more	readable,	because	everything	is	captured	right	there.		
	
We	can	also	chain	these:	
nums.map(lambda x: x*2).filter(lambda x: x%2==0)
[2, 4, 6, 8, 10]

(Surprisingly	if	you	double	a	number,	the	result	is	always	even!)	
	
Or	we	can	chain	them	the	other	way	round:	
nums.filter(lambda x: x%2==0).map(lambda x: x*2).
[4, 8]
	
We	can	quickly	create	new	functions.	For	example,	imagine	we	wanted	all	the	
even	squares.		We	can	try	this:	
	

Big	Data	Engineering	in	the	Cloud	
	

Pre-course	exercise	
	

©	2019	Julie	Weeds	(adapted	from	Paul	Fremantle	/	Betwixt	2017)	

nums.map(lambda x: x**2).filter(lambda x: x%2==0)
[4, 16]	
Now	suppose	we	wanted	to	add	up	all	the	squares	from	1	to	5.
First	we	need	the	list	of	squares.	Try	this:	

squares = nums.map(lambda x: x**2)
print(squares)

In	a	procedural	language,	the	normal	approach	is	to	use	a	loop:	create	a	variable	
total	and	then	add	each	to	the	total.	That	isn’t	very	functional,	because	functions	
don’t	have	variables.	More	importantly,	it	has	state	(the	loop	counter	and	the	
total).	State	is	the	enemy	of	scalability	(as	we	will	find	out	in	the	course).		
	
Instead,	we	can	have	a	function	that	is	applied	to	elements	in	the	list,	but	instead	
of	returning	an	element,	it	returns	an	accumulator,	and	then	applies	this	to	the	
next	element.	In	general	this	technique	is	called	folding.		Specifically,	we	call	this	
the	reduce	function.	Another	way	of	thinking	of	reduce	is	to	imagine	putting	an	
associative	operator	between	the	elements	of	the	list.	So	for	example	if	we	
wanted	to	add	up	the	list:	
[1, 4, 9, 16, 25]
we	simply	need	to	put	the	+	operator	between	each	entry:
[1 + 4 + 9 + 16 + 25]
	
The	plus	operation	can	be	defined	simply	using	a	lamba:	
lambda x, y: x+y

Let’s	try	that.	In	a	new	cell	type:	
print(squares.reduce(lambda x,y: x+y))

	
	
We	don’t	just	have	to	use	numbers	with	these	meta-functions.	Suppose	we	have	
two	sentences	and	we	want	the	individual	words:	

sentences = FList(['The moon is made of cheese.', 'Badgers love jam.'])
print sentences.map(lambda x: x.split())

This	is	cool,	but	you	might	see	an	issue	here.	We	have	a	list	of	lists.	We	might	just	
want	a	single	list.	There	is	a	functional	pattern	called	flattening	that	does	this.	

print(sentences.map(lambda x: x.split()).flatten())

Big	Data	Engineering	in	the	Cloud	
	

Pre-course	exercise	
	

©	2019	Julie	Weeds	(adapted	from	Paul	Fremantle	/	Betwixt	2017)	

Usually	the	flattening	is	needed	because	of	a	map.	Hence	flatMap,	which	lets	us	
do	it	all	in	one	go:	
	
print(sentences.flatMap(lambda x: x.split()))

	
That	should	be	enough	lambdas	and	meta-functions	to	get	us	started.		
To	recap,	we	have	covered	a	little	bit	of	map,	filter,	flatten,	flatMap,	reduce	and	
lambda.	
	
You	can	close	the	browser	window.	Then	click	back	on	the	terminal	window	and	
hit	Ctrl-C.	You	should	see:	
	
Shutdown this notebook server (y/[n])?

Type	y	and	hit	Enter.	You	can	now	type	exit		to	close	the	Terminal	window.	
	
Congratulations	on	completing	the	first	exercise.	

